翻訳と辞書
Words near each other
・ Iwade Station
・ Iwade, Wakayama
・ Iwadeyama Castle
・ Iwadeyama Station
・ Iwadeyama, Miyagi
・ Iwafune Dam
・ Iwafune District, Niigata
・ Iwafune Station
・ Iwafune, Tochigi
・ Iwafunemachi Station
・ Iwagi, Ehime
・ Iwahana Station
・ Iwahara Station
・ Iwahashi Zenbei
・ Iwahig Prison and Penal Farm
Iwahori subgroup
・ Iwahori–Hecke algebra
・ Iwai
・ Iwai (surname)
・ Iwai Hanshiro I
・ Iwai Hanshiro V
・ Iwai Hanshiro VIII
・ Iwai Island
・ Iwai Rebellion
・ Iwai Station
・ Iwai, Ibaraki
・ Iwaichi Fujiwara
・ Iwaidja language
・ Iwaidjan languages
・ Iwaizumi Line


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Iwahori subgroup : ウィキペディア英語版
Iwahori subgroup
In algebra, an Iwahori subgroup is a subgroup of a reductive algebraic group over a local field that is analogous to a Borel subgroup of an algebraic group. A parahoric subgroup is a subgroup that is a finite union of double cosets of an Iwahori subgroup, so is analogous to a parabolic subgroup of an algebraic group. Iwahori subgroups are named after Nagayoshi Iwahori, and "parahoric" is a portmanteau of "parabolic" and "Iwahori". studied Iwahori subgroups for Chevalley groups over ''p''-adic fields, and extended their work to more general groups.
Roughly speaking, an Iwahori subgroup of an algebraic group ''G''(''K''), for a local field ''K'' with integers ''O'' and residue field ''k'', is the inverse image in ''G''(''O'') of a Borel subgroup of ''G''(''k'').
A reductive group over a local field has a Tits system (''B'',''N''), where ''B'' is a parahoric group, and the Weyl group of the Tits system is an affine Coxeter group.
==References==

*
*
*

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Iwahori subgroup」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.